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Abstract 

The fundamental postulate of our theory is the constancy of light velocity only with 
respect to absolute space. This postulate was proved right by our recently performed 
'coupled-mirrors' experiment (Marinov, 1974). In the present paper it is shown that the 
so-called (by us) Newtonian and Einsteinian time synchronisations lead respectively to 
the Galilean and Lorentz transformations. Both types of synchronisation can be practi- 
caUy realised, hence both corresponding transformations describe the physical reality at 
low as well as at high velocities of the material points. The conception that the Einstein 
time dilation is an absolute phenomenon and the Lorentz length contraction a fiction is 
defended. 

1. Introduction 

Our absolute space-time theory (Marinov, in preparation) fmds its experi- 
mentum crucis in the 'coupled-mirrors' experiment recently pertbrmed by us 
(Marinov, 1974). This experiment has undoubtedly shown that the Einstein 
principle of relativity is invalid and that the hypothetical motionless "lumi- 
niferous ether' of the nineteenth century in which light propagates with 
velocity c in all directions is a physical reality which we call absolute space. 

After the development of the 'coupled-mirrors' experiment, theoretical 
physics has to thoroughly revise the fundamental space-time concepts defended 
by conventional physical theory, whose important basis is the theory of rela- 
tivity, and in many aspects return to the old Newtonian absolute conception. 
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However, we must emphasise that we also work with the Lorentz transforma- 
tion and do not reject it. Hence, almost all formulae of conventional physical 
theory find a place in absolute space-time theory, thus the revision of the 
mathematical apparatus is very limited. 

In this paper we shall expound our basic space-time concept and we shall 
show how we arrive at the following two very important conclusions: 

(a) The Einstein time dilation is an absolute phenomenon (as supposed by 
Lorentz) and not a relative phenomenon (as supposed by Einstein). 

(b) The Lorentz length contraction is pure fiction, i.e., it is neither an abso- 
lute phenomenon (as supposed by Lorentz) nor a relative phenomenon 
(as supposed by Einstein). 

2. Newtonian and Einsteinian Time Synchronisations 
According to our theory light propagates with velocity e along all directions 

only in absolute space. The definition of absolute space is given in Marinov 
(1972). Since our 'coupled-mirrors' experiment has not yet given a reliable 
quantitative value for the absolute earth velocity, and since the astronomers 
also cannot offer such a reliable value, we shall assume that absolute space is 
that in which the centre of mass of our Galaxy rests. 

It is well known that physics is geometry plus time. Hence any physicist 
must start with the problem of how time is to be measured. 

We shall suppose that we have a clock which operates at the same rate as 
'die Rgder an der grossen Weltenuhr', i.e., that this clock performs a periodical 
motion with exactly equal periods. If we want to have at some other place of 
the used reference frame another 'daughter' clock which would show the same 
time as our 'mother' clock, i.e., whose pointers show at any absolute moment 
the same reading on its clock-face as the pointers of the 'mother' clock, then 
we have two possibilities of realizing this: 

(a) Between the 'mother' and 'daughter' clocks we place a long rigid shaft 
which is rotating at a constant angular velocity determined, say, by the 
'mother' clock. Let us have two cog-wheels on both ends of the shaft 
and let us number any two cogs which lie against each other on the 
opposite ends of a given shaft's generation. Let us now suppose that at 
the beginning of any time interval chosen as a time unit a definite cog 
of the first cog-wheel comes in touch with the 'mother' clock. If the 
pointers of the "daughter' clock show the reading which is 'communi- 
cated' by the corresponding cog of the second cog-wheel when it makes 
contact with the 'daughter' clock, then we say that a Newtonian time 
synchronisation is maintained between both clocks. 

(b) From the 'mother' clock we send a light signal at the beginning of any 
time interval chosen as a time unit. If the pointers of the 'daughter' 
clock show the reading which the light signal has "communicated', plus 
the time r/c, where r is the distance between both clocks, then we say 
that an Einsteinian time synchronisation is maintained between both 
clocks. 

When introducing the Einsteinian time synchronisation we make the 
assumption that light propagates with a velocity which has the same numerical 
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value along all directions in any inertial frame of reference, i.e., in any frame 
which moves with a constant velocity with respect to absolute space. 

If  our 'mother '  and 'daughter' clocks rest in absolute space, then their 
Newtonian and Einsteinian time synchronisations lead to the same result, i.e., 
two 'daughter' clocks placed at the same space point and synchronised respec- 
tively in Newtonian and Einsteinian manner wilt show the same reading on their 
clock-face. However, if our clocks move with a certain velocity in absolute 
space, then two such 'daughter' clocks will show different readings, and from 
this variance, with the help of r and c, one could determine the component V 
of the unknown absolute velocity along the line connecting the 'mother '  clock 
to both 'daughter' clocks. This is due to the fact that velocity of  light in a frame 
moving with velocity V in absolute space is equal to c - V along a direction 
parallel to V and to c + V along a direction antiparallel to V. 

In our 'coupled-mirrors' experiment (Marinov, 1974) we have realised for 
the first time in the history of physics a combination of the Newtonian and 
Einsteinian time synchronisations and this gave us the possibility of  determin- 
ing the absolute earth velocity. 

3. The GaIilean and Lorentz Transformations 

If  we have two frames of reference moving with respect to each other, i.e., 
moving with different velocities respectively to absolute space, then the use of  
the Newtonian and Einsteinian synchronisations would lead to two different 
types of  transformation formulae for the elements of motion of a given material 
point whose motion is considered in both frames. The Newtonian synchronisa- 
tion leads to the Galilean transformation formulae and the Einsteinian syn- 
chronisation leads to the Lorentz transformation formulae. 

We shall first deduce the Galilean transformation. 
Let us have (Fig. 1) two frames K and K '  between which there is the case 

I y,y'(O) ' 

y'(t) j P(O) P(t) 

I 
ltJ. 70 I /30' 

t - -  

X' ,~ X,X '  
l _  

Figure 1.-Two space frames moving with respect to each other, the transformation 
between being a special one. 
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of a special transformation, i.e., at the initial zero moment  both frames have 
coincided and frame K '  proceeds with velocity V along the positive direction 
of  the x-axis of  frame K (or frame K proceeds with the same velocity along 
the negative direction of  the x'-axis of  frame K') .  For the sake of  simplicity 
we have shown a two-dimensional case in Fig. 1. 

Let point P be at rest in K ' .  For the initial zero moment ,  to = to = 0, the 
radius vectors ro and ro of  point P in both  frames are equal. For an arbitrary 
moment  t ( to which in frame K '  the moment  t '  corresponds) the radius vectors 
of point P in frames K and K '  are respectively r and r' (= r~). It  is obvious that 
the y- and z-components of  r and r' are equal, i.e., 

y =y',  z =z'  (3.1) 

Only the x-components  are different at any different moment .  To find the 
transformation formulae for the x-components  let us assume that at the initial 
zero moment  we send a photon from the common frames' origin to the projection 
of point P on the x-axes. When the Newtonian time synchronisation is used we 
should find that this photon reaches the projection of P at the moments  

x x t 

t = t '  = ~ (3.2) 
C' c - V  

respectively, if we assume that frame K is attached to absolute space, or at the 
moments  

X f 
X tr = - -  

t = c +  V '  c (3.3) 

if we assume that frame K '  is attached to absolute space. 
In both cases it must be 

X X r X X t 

c c - V '  c + V  c 

respectively, i.e., 

(3.4) 

and 

From (3.2) and (3.5), as well as from (3.3) and (3.5), we immediately 
obtain 

x = x '  + V. t' (3.6) 

x '  = x - V. t (3.7) 

Formulae (3.6), (3.7), (3.1) and (3.5) represent the special Galilean trans- 
formation which is the mathematical basis of  so-called non-relativistic 
mechanics. 

Let us now deduce the Lorentz transformation. For this purpose the 

t = t '  (3 .5 )  
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Einsteinian time synchronisation must be used, and instead of formulae (5.2) 
and (3.3) we should consider, in both cases, 

X X ~ 
t = - ,  t '  = - ( 3 . 8 )  

c c 

We see that when the Einsteinian synchronisation is used the couples of 
formulae (3.2) and (3.3) must be replaced by the unique couple (3.8). Thus 
we have also to replace both formulae (3.4) by a unique formula. This is done 
by multiplying formulae (3.4) and taking the square root giving 

x . J ( I  - V )  J ( l +  V ) (3.9) 

From here, using the second formula (3.8), we get 

x ' +  g .  t '  
X ~- j(1 (3.10) 

and using the first formula (3.8) we get 

x - V . t  
x' - (3.i1) j(l ) 

Substituting (3.10) into(3.t  t)  we obtain 

t ~ + X r . m / c  2 
t - ( 3 . 1 2 )  

and substituting (3.11) into (3.10) we obtain 

t '  - t - x .  V / c  2 (3.13) 

Formulae (3.10), (3.11), (3.1), (3.12), and (3.13) represent the special 
Lorentz transformation which is the mathematical basis of so-called relativistic 
mechanics. 

At the given deduction of the Lorentz transformation the moments t and 
t' (for which we have obtained the transformation formulae) are such that a 
photon sent at the initial zero moment, to = to = O, from the origins of frames 
K and K', along their x-axes, just reaches the projections of point P on the 
x-axes at the moment t (or t'). 

We shall now suppose the most general case where t and t' are arbitrary. In 
such a case we send a photon from the origin of the moving frame K' at some 
initial moment to ~ 0 (or to ~ 0) and it reaches the projection of point P on the 



194 S T E F A N  M A R I N O V  

x-axes at the arbitrary moment t (or t'). In this general case, if we suppose that 
the rest frame K is attached to absolute space, we shall have, on the grounds of 
formulae (3.10), (3.11), (3.12), and (3.13), 

x '  + V. ( t ' -  t~) 
t -  to - 

X p - -  
x - Xo - V. (t - to) 

X t . V 

t' - to + 02 

2(1 ) 
(x -Xo). V 

t -  to c2 
t t  i 

(3.14) 

where Xo is the x-coordinate of the origin O' of  frame K '  at the moment to 
(or to) when the 'photon-runner' is sent from O' along the x-axes; this photon 
reaches the projection x (or x ' )  of point P at the moment t (or t'). Hence 

Xo = V. to (3.15) 
If we further assume 

to = to. 1 - (3.16) 

then formulae (3.14) reduce to formulae (3.10), (3.11), (3.12), and (3.13). 
This assumption (namely, that time goes at a slower rate according to 

relation (3.15) in any frame moving at velocity V with respect to absolute 
space is fundamental in our absolute space-time theory and is called the 
absolute t ime  dilation. We can consider this assumption as a result of the 
Lorentz transformation, because if we place into (3.12) x '  = 0, we obtain 

t' = t .  1 - - ~ -  (3.17) 

The opposite assumption (which would follow from (3.13) if we insert 
x = 0) cannot be made because only frame K '  (together with the attached K'-  
clock) can be considered moving with respect to absolute space, but evidently 
we can not  make the symmetric opposite assumption that absolute space 
(together with the attached K-clock reading absolute time) moves with respect 
to frame K' .  

However, we must emphasise that relation (3.17) is not an absolute logical 
result of the Lorentz transformation because the existence of absolute space is 
no t  imprinted in the Lorentz transformation formulae which have an absolutely 
symmetric character from a mathematical  viewpoint .  As a matter of fact, the 
special theory of relativity, which works with the Lorentz transformation, does 
not come to the conclusion that the time dilation is an absolute phenomenon 
and has endeavoured (despite the resistance of the healthy mind of several 
generations of physicists) to treat the time dilation as a relative phenomenon. 
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In Section 6 we give further motivations in favour of our absolute time 
dilation dogma. Other motivations will be given in future papers which are 
being prepared for printing. 

We shall also need the formutae for our so-called restricted Lorentz trans- 
formation. The restricted transformation has the same character as the special 
one, with the unique difference that the relative velocity V is not parallel to 
the x-axes of frames K and K' but has an arbitrary direction. The formulae for 
the restricted Lorentz transformation can easily be obtained if we consider the 
radius vector r of an arbitrary point P as a sum of its vector components rll and 
r±, which are respectively parallel and perpendicular to V, and if we apply the 
special Lorentz transformation to rll and r±. We therefore obtain 

r=r '+  V2 - . - - ~ - +  - V2 .V 

~ -  1 ~ (3.18) 

t r'.V~ 
t :  . +-7-] 

and the parallel inverse formulae if we should express r' and t' by r and t. 
In conclusion, we can say that the Galilean and Lorentz transformations 

represent two different mathematical implements which are used for the 
description of the same physical reality, i.e., they represent two slightly 
different images of the same object. We do not agree with the conventional 
opinion that the Galilean transformation represents only a limited case of the 
Lorentz transformation when V ~ c. We defend the assertion that the Galilean 
transformation is also to be used when high velocity material systems are 
considered. The difference between these two transformations is determined 
only by the different character of synchronisation of clocks remote in space. 

4. Space Intervals in Non-Relativistic Mechanics 

Let us take a rod which is at rest in the used reference frame. We can 
measure its length (i.e., the space interval between both ends), with the help 
of a standard length, during a specific time, the duration of which is of no 
importance. 

However, if this rod moves in the used reference frame, then we cannot 
proceed in such a manner. We now have to register the 'track' which the rod 
would leave for a certain time interval. After measuring this 'track', which re- 
presents a 'rod at rest' in the used frame, we can calculate the true length of 
the moving rod if we know its velocity and the duration of the corresponding 
time interval. Of course, if the time interval is insignificantly short, then it is 
not necessary to make such a correction over the measured 'track'. 

As an example let us measure the length of a train which moves with vel- 
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ocity v. I f  we run a certain time t with a velocity c (c > v), parallel with the 
train from the last carriage to the locomotive, we shall cover a distance 

r = r o  + v .  t (4.1) 

where ro is the length of  the train, which could be measured when resting at 
the station. 

Both ends o f  distance r can be marked by us relative to the ground (rela- 
tive to the railway), and, having these two scores, we can measure distance r 
during specific long time-interval. 

But we can run with velocity c on the top of  the carriages (as we have seen 
many times in the movies) and, throwing two stones, mark the ' track'  with 
respect to the railway. 

In the first case, i.e., when our velocity c is taken with respect to the ground, 
we shall have 

r 
t = -- (4.2) 

C 

and, in the second case, i.e., when our velocity c is taken with respect to the 
train, we shall have 

ro  
t = - -  (4.3) 

C 

Substituting (4.2) and (4.3) into (4.1), we obtain, respectively 

ro (:) 
r -  , r = r o .  1+ (4.4) 

/) 
1 - - - -  

C 

We note that these two relations differ within second-order terms of  v/c. 
This is a result of  the two different assumptions concerning velocity c, namely 
that in the first case c is the velocity of  the 'runner'  with respect to the ground, 
and in the second case c is the velocity of  the 'runner'  with respect to the train. 
If  in the first formula of  (4.4) we put c + v instead of  c, we should obtain the 
second formula o f  (4.4), and if in the second formula we put c - v instead o f  
c, we should obtain the first formula. 

Let us now consider the most general case, where the velocity of  the moving 
rod is not parallel to its length (see Fig. 2). Similar results could be obtained if 
we want to know the distance between a point q, moving with an arbitrary 
velocity v, and a point Po which rests in the used reference frame. 

There are two possibilities of  measuring the length of  the moving rod PoQo, 
or the distance between the rest point Po and the moving point q when the 
latter crosses the space point Qo: 
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o r  

/to 

/ 

PO P x 

Figure 2 . - A  'photon-runner' going 'there' or 'back'. 

(a) either to start from point q (when it crosses Qo) at the moment to, 
which we shall call the emission moment ,  and covering with velocity c 
the distance ro = QoPo to  arrive at point Po at the moment  

t = to + ro  (4.5) 
e 

which we shall call reception moment;  
(b) or to start from point Po at the emission moment to and covering with 

velocity c the distance r = Po Q to catch point q (when it crosses Q) at 
the reception moment 

F 
t = to + -  (4.6) 

C 

We have to use the relation 

r = ro + v. (t - to) (4.7) 

If  into this equation we first place (4.7), we should obtain, using Fig. 2, 

r=ro .  1 + 2 . - - . c o s 0 o  + (4.8) 
C 

) r = ro. 1 - fi-.  sin s 0 + --'c cos 0 (4.9) 

where 0o is the angle between v and ro (the vector connecting point Po with 
point q at the emission moment)  and is called the emission angle, while 0 is the 
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angle between v and r (the vector connecting point Po with point q at the recep- 
tion moment) and is called the reception angle. 

If now into equation (4.7) we place (4.6), we should obtain, using Fig. 2, 

o r  

ro  r?( v20)v 
1 - ~ - . s i n  20 ---c 'C°S0° 

(4.10) 

ro  r=/[ v2 .... ( 4 . 1 1 )  

1 -  2 . - - . cosO + 
C 

The distance ro can be called the emission distance and the 'track' distance 
r can be called the reception distance. 

Let us now find the relation between ro and r when the 'runner' covers, 
with velocity c, some middle distance rm, starting at the emission moment to 
from Qm (or from Po) and arriving at the reception moment 

t = to + rm ( 4 . 1 2 )  
C 

at Po (or at Qm). 
We can now write (see Fig. 2) 

r_m ; r ' c ° s  O -  ro.cos Oo 

C V 
(4.13) 

When the 'runner' covers distance ro between the emission and observation 
moments, it is 

r o = r . c o s  0 -  to.COS 0o 
(4.14) 

C V 

from where 

r = ro.V'c/ + cos 0o (4.15) 
cos 0 

and when the 'runner' covers distance r between the emission and reception 
moments, it is 

r r . c o s 0 - r 0 . c o s 0 o  
- ( 4 . 1 6 )  

C v 

from where 

cos 0o 
r = rO.co s 0 - v/c (4.17) 
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Relations (4. t 5) and (4.17) differ within second-order terms v/c and can be 
called non-relativistic relations between ro, r, 0o, 0, v, and c because, until now, 
we have worked only with the Newtonian concept. 

Let us now find a relation between ro, r, 0o, 0, v, and c which would corre- 
spond to condition (4.13). For this reason we have to define an expression for 
r m through ro, r, 0o, 0, v, and c, substantially different from (4.13), and, 
putting this expression into (4.13), obtain a suitable relation between ro, r, 0o, 
0, v, and c. We have made many mathematical efforts to do this, without 
success, and we found the following to be the most reasonable path: Let us 
multiply formulae (4.15) and (4.17) and let us take the square root: we obtain 

r ro.N/ \ c o s O _ v / c . c - ~ s O ]  (4.18) 

We can now call (4. t 8) the relativistic expression between r and ro, because 
the way in which we pass from both non-relativistic formulae (4.15) and (4.17) 
to the unique formula (4.18) is similar to how we passed from both non- 
relativistic formulae (3.4) to the unique relativistic formula (3.9). However, the 
mathematical essence of  relation (4.18) is now very transparent and clear from 
a non-relativistic point o f  view, because it is obvious that relation (4.18) 
corresponds to the case where the 'runner'  covers some middle distance rm 
between the emission and reception moments. 

From Fig. 2 we have 

ro sin 0 
(4.19) 

r sin 0o 

and from (4.18) and (4.19) we obtain the following relations between the 
angles 0 o and 0 

cos Oo + v/c cos 0 - v/c 
cos 0 = , cos Oo = (4.20) 

I + - . c o s  Oo i - - . c o s O  
C C 

From formulae (4.19) and (4.20) we find 

2(t 9 1 + - - .  cos 0o - 
¢ 

 o.0 
from where 

1 + c . c o s  Oo 

r = r 0 . .~ . . . . .  

_ 2_. cos 0 
C 

(4.22) 
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From (4.21) we get 

v . v = t - ¢-i" (4.23) 

Since it is approximately 

cos O o = cos Om + a, cos 0 = cos Om - a (4.24) 

where a is a positive or negative quantity and Om is the angle between v and 
r m (the vector connecting point Po with point q at the middle moment t m be- 
tween the emission and reception moments), which is called the middle angle, 
then we can write (4.22) approximately in the form 

/ / 1  + ~-.cos 0m~ 

r= r°" / I v ....... I (4.25) 
~/ \I--7.COS0m / 

We must emphasise that formulae (4.21) are identical, while formulae (4.8) 
and (4.9), on the one hand, and formulae (4.10) and (4.11), on the other hand, 
are different. So for the longitudinal case 00 = 0 = 0, instead of the two for- 
mulae (4.4), obtained when proceeding, respectively from formulae (4.10) and 
(4.11) and formulae (4.8) and (4.9), we obtain the unique formula 

/[l+v/c~ 
r= r o . d  ~ l - ' 7 ~  ] (4.26) 

when proceeding from formulae (4.21). 
However, it is important to note that for the transverse case 0o = rr/2 

formulae (4.21), (4.10) and (4.8)-the last within an accuracy of second order 
in v/c-give the same result: 

r0 
r - (4.27) Y0 ) 

and for the transverse case 0 -- rr/2 formulae (4.21), (4.9) and (4.11)--the last 
within an accuracy of second order in v/c-again give the same result: 

Thus the difference between the non-relativistic formulae (4.8), (4.9), 
(4.10) and (4.11) and the relativistic formulae (4.2 t ) is not so drastic. 

It is clear that the problem, which formulae correspond better to reality- 
the non-relativistic or the relativistic-cannot be posed. These slightly different 
formulae correspond to slightly different conditions under which the 'runner' 
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covers with velocity c the distance between points P0 and q, and they all 
correspond to reality. 

However, when the 'runner' is a photon, then, as nature shows (this can be 
seen in the Michelson-Morley experiment and in the longitudinal Doppler 
effect experiments), the relativistic formulae (4.21) correspond to reality and 
the non-relativistic formulae do not. Thus we have to assume that during the 
emission and reception moments the 'photon-runner' covers the middle distance 
with velocity c. In our opinion, this conclusion, as a matter of fact, is a result 
of the absolute time dilation dogma. 

Let us now suppose that the reference frame in Fig. 2 is attached to absolute 
space and thus point q moves with velocity v in absolute space. I f  we denote 
by Co the velocity of  the 'photon-runner' with respect to point q, then instead 
of formula (4.5) we have to write the following one 

t = to  + r o  ( 4 . 2 9 )  
go 

and now formulas (4.6) and (4.29) will be valid together. In this case we can 
immediately obtain from formulas (4.21), (4.6), and (4.29) 

C o = C  . 

1 -  1 - - v  . cos0  
c 

1 + - "  cos 00 1 - (4.30) 
c 

Those are the formulas for the velocity o f  light in a moving frame of  refer- 
enee in relativistic mechanics, according to our absolute space-time conceptions. 

The same formulas can be also obtained when proceeding from the Lorentz 
transformation. Let us suppose that frame K in Fig. 1 is at rest in absolute 
space and frame K '  is the moving one. If  the 'photon-runner' is sent from the 
coinciding origins of  K and K '  at the initial zero moment, to = to = 0, and if 
it catches point P respectively at the moments t and t', we should have (see 
(3.8)) 

r r '  
- = c t'  - e ( 4 . 3 1 )  
t 

i.e., the velocity of  light in both frames has the same numerical value when 
time in these frames is not the same but is to be transformed according to the 
Lorentz transformation formulas. However if we should measure the velocity 
of  light in both frames in the same absolute time, we have to write 

r r '  
- = c, - Co (4.32) 
t t 
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Substituting t from the second formula (3.18) into the second formula 
(4.32), we get, keeping in mind the second relation (4.31), 

Co - 7 - T "  ~!. ~ = c .  v 
1 + - -  • cos O' 

1 + . t ,  • c 2 c 

(4.33) 

Obviously, we cannot express t throughT' and-~ r, but 7 '  through F and t 
according to the formula inverse to the first formula (3.18) and use the first 
relation (4.31). The calculation in this case is'more complicated and we obtain 

7"~ V 
1 - - -  1 - - - - c o s O  

r' X/(~'2)_ r . t .  c 2 c 

(4.34) 

5. Space Intervals in Relativist ic Mechanics  

In this section we proceed from the Lorentz transformation formulae and 
intend to show to which results they lead concerning the space interval between 
two points moving with velocity V together, or one with respect to the other. 
When referring to a 'rod',  we will also have in mind the second case. 

Let us consider the problem about the length of a 'rod',  using first the 
Einsteinian t ime synchronisation.  Hence the measurement of the length of a 
'rod'  is to be performed by sending a light signal from one of its ends to the 
other. Then the distance between both scores left in the rest flame K is to be 
measured and the real length (distance), if we know the relation V/c,  calculated. 

Let us have a 'rod' which has an arbitrary position in flame K '  (use Fig. 1) 
and let us find its ' track' in frame K. We proceed from formulae (3.10) and 
(3.1) and build the differences x2 - x t, y 2 - Y l, Z2 - z l, where (x l, Y l, z l) and 
(X2, Y2, z2) are the coordinates of the scores left in frame K when a light signal 
is sent at the moment tl (t'l) from one end of the 'rod' to its other end, which 
is covered by the signal at the moment t 2 (t2). Let us square these differences 
and add, respectively, their left and right sides. Taking the square root from 
the equation obtained, and substituting there 

y! 
r 1 t 2 P r r 0  

t 2 - t ' l = - - . V / [ ( x ' 2 - x O  + 0 , 2 - y ' l 1 2  + ( z 2 - z ' 0 2 1  = - =  (5.1 / 
C C C 

we obtain the following relation (cf. (4.21)) 
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V n o .  V 
1 + - - . c o s  Oo 1 + - -  

¢ ¢ 

r = r 0 = r 0 

. j ( 1 -  c _ ~ ) . j ( 1  _ c ~  ) (5.2, 

where we have used the notation 

x~ - x______~'~ 0' r '  =cos = c o s 0 o  (5.3) 

and n' = no is the unit vector pointing from the initial to the final end of the 
'rod' in frame K' .  

In the same way, proceeding from formula (3.11) and the inverse formulae 
(3. I) and using the condition 

1 - -  ( 5 . 4 )  t2 - tl = -- .  X / [ (x2 - -x l )  2 + @ 2 - Y l )  2 + (z2 - z 0 2 1  = r 
c c 

we obtain the following relation (cf. (4.21)) 

V n . V  
1 -- -- .  cos 0 1 -- 

¢ ¢ 
- r .  ( 5 . 5 )  r°=r'J(1-- V~) ~J(1- V_~) 

where we have used the notation 

x 2 - -  x 1 

r 
- -  = cos 0 (5.6) 

and n is the unit vector pointing from the initial to the final end of the 'track' 
of  our 'rod' in frame K. 

Relations (5.2) and (5.5) can also be obtained, proceeding from the formulae 
for the restricted Lorentz transformation. 

Indeed, proceeding from the first formula (3.18), let us build the difference 
r2 - r~, where rl and r2 are the radius vectors of  the scores left in frame K when 
a light signal is sent at the moment tl  (t'l) from one end of  our 'rod' to its 
other end which is covered by the signal at the moment t2 (t~). Squaring both 
sides of  the equation obtained, taking the square root,  using the notations 

r2 - rl = r .  n,  r~ - -  r ' l  = r ' .  n' = ro .  no  ( 5 . 7 )  

and introducing the conditions 

r r r r  gO 
t2 - t l  = - ,  t2 - t ' l  . . . .  ( 5 . 8 )  

c c c 

we obtain formula (5.2). 
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In a similar way, proceeding from the inverse formula to (3.18), we can 
obtain formula (5.5). 

We shall now write formulae (5.2) and (5.5) in different notations. 
Let us consider again the point q proceeding with an arbitrary velocity v in 

the rest frame of  reference K (see Fig. 3 and compare it with Fig. 2). When q 
crosses the space point Q'  a light signal (a 'photon-runner ' )  is sent towards 
point P, which we shall call the reference point. This light signal, covering 
distance r ' ,  reaches P at the moment  t, called the observation moment, when 
q crosses point Q. At this very moment  a light signal is sent from P which, 
covering distance r",  catches q when it crosses point Q". 

The moment  
r F 

t' = t -  -- (5.9) 
C 

y 
Q o"  

ss 
t 

p 7~ 

Figure 3.-A 'photon-runner' going 'there' and 'back'. 

at which a light signal is sent from q when it crosses point Q'  is called the 
advanced moment. 

The moment  

r tr 

t" = t + - -  (5.10) 
c 

at which a light signal sent from P reaches q when it crosses point Q", is called 
the retarded moment. 

Slightly different values for the advanced and retarded moments  should be 
obtained if in formulae (5.9) and (5.1 O) we write ro instead of  r '  and r". 

We call r', r", and ro, respectively, the advanced, retarded, and observation 
distances. 

When comparing Fig. 3 with Fig. 2 we must take into account that the 
triangle QoPoQ corresponds either to the triangle Q'PQ or to the triangle 



EXPERIMENTAL VERIFICATION OF ABSOLUTE SPACE-TIME THEORY-I 205 
QPQ". Take also into account that in Fig. 2 the radius vectors ro and r (i.e., 
the unit vectors no and n) point from the rest point P to the moving point q, 
while in Fig. 3 the unit vectors n', n, and n" point from the moving point q to 
the rest point P. We also see immediately that if the emission moment  is the 
advanced moment,  then the reception moment is the observation moment,  and 
if the emission moment is the observation moment,  then the reception moment 
is the retarded moment.  

Thus, writing in formula (5.2) 

r = ro, ro = r ' ,  

and writing in formula (5.5) 

r 0 = r o ,  r = r ' ,  

we obtain, respectively, 

n o = - n  ', 0 o = 0  ', V = v  (5.11) 

11 I t  
n = - n ,  0 = 0  , V = v  (5.12) 

n ~ . V V 
1 - 1 - - - .  cos 0' 

t C - r  ~ C 

r°=r "I(1- v~_~) "](i_ v~) 
n". v v 

1 + - -  1 + - - .  cos 0" 
. C - -  r "  C 

r°=r "I(1- v~) "I(I- v~_~) 

(5.13) 

Let us now consider the problem about the length o f  a ' rod '  using Newtonian time synchronisation. Hence the length of  a given ' rod '  moving in frame K with 
velocity v is to be established, registering the scores which both its ends leave 
in frame K at a given absolute moment. 

We must emphasise that according to our absolute space-time conception, 
at a given moment  the "rod' has the same length in any frame of  reference. 
However, if we use Newtonian time synchronisation in the Lorentz transforma- 
tion formulae, then a certain peculiarity appears which will now be analysed. 

The 'momentary '  length of  a ' rod '  will be called the distance between both 
its ends and will be denoted 

r = Vl[(x2 -- x l )  2 + @2 -- Yl) 2 + (z2 -- zt) 21 (5.14) 

where (x l, Yl, zO and (x2, Y2, z2) are the coordinates of  both ends of  the ' rod '  
which are registered in frame K at the same moment  

tl = t2 = t (5. t5)  

If  we compare (5.14) with (5.4), we must take into account that in (5.4) r 
is the ' track'  distance left by the ' rod '  in frame K during a definite time interval 
t2 - tl, while r in (5.14) is a 'momentary track' left by the ' rod '  in K at a given 
instant. 
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Let us now write the length of this ' rod '  in frame K ' .  Supposing that the 
' rod'  rests in K ' ,  we shall have 

r ' =  r0 = ~/[(x~ - x'l) 2 + (y~ - y ' x )  2 + (z~ - z',) 2] (5.16) 

where (xa, Yl, za) and (x2, Y2, z : )  are the coordinates of  both ends of  the rod 
which are regtstered in frame K .  Since the rod rests m K ,  then these co- 
ordinates concern every moment  there. 

Using formula (3.11) and the inverse formulae (3.1) into (5.16), and 
remembering condition (5.15), we find 

1 ro-jo--~j'J{(x~-x')Z+O-~)'[(Y2-Y')~+(zz-z02] } 
(5.17) 

I f  we use here notations (5.6) and (5.14) we get 

1 - . s i n  2 0 

r 0 = r .  ' 

where 0 is the angle between the line along which the ' rod '  lies and its velocity. 
We call ro the proper distance of  the moving ' rod ' .  
For 0 = rr/2 we obtain 

ro = r (5.19) 

and for 0 = 0 we obtain 

r r0:j(, 
According to our absolute conception the difference between the distance 

r and the proper distance ro is not  a result o f  some physical length contraction 
(commonly called the Lorentz contraction). This is a result of  the interference 
of  the two slightly different mathematical appara tus - the  non-relativistic and 
the relativistic. 

Indeed, using Fig. 3 and performing a purely non-relativistic calculation, we 
shall have 

r c . V . c o s  0 = . s in0  (5.21) 

But according to the law of  sines it is 

r ~ r 
- - -  (5.22) 

sin (Tr - 0) sin 0' 



EXPERIMENTAL VERIFICATION OF ABSOLUTE SPACE-TIME T H E O R Y - I  207  

so that we can write (5.21) in the form 

v 0~ 1 -- - - .  cos 
C 

' ( 5 . 2 3 )  F = F  . 

This formula, and the first formula (5.13) lead immediately to relation 
(5.18). 

We must emphasise that when writing equation (5.21) we have assumed 
that the 'photon-runner' covers the emission (i.e., the advanced) distance. If  
we should assume that the 'photon-runner' covers the reception (i.e., observa- 
tion) distance, another relation between ro and r can be obtained which will 
lead to a 'length dilation'. 

Hence we must took to the distance r as a 'non-relativistic' observation 
distance and to the proper distance r0 as a 'relativistic' observation distance. 
These two distances are connected by relation (5.18). This permanent contra- 
diction between the distance r and the proper distance ro appears, not as a 
result of some peculiar property of space and time, which the theory of rela- 
tivity has tried to introduce into physics, despite the resistance of the healthy 
human mind, but as a result of the fact that in non-relativistic mechanics we 
assume that between the moments of emission and reception the 'photon- 
runner' covers either the emission or the reception distances, while in rela- 
tivistic mechanics we assume that the 'photon-runner' covers the middle 
distance. We shall repeat (see the end of Section 4), in the basis of this contra- 
diction lies the absolute time dilation. 

6. Time Intervals 

Let us have (Fig. 4) two so-called light clocks, one of which (clock A) is at 
rest in the used reference frame attached to absolute space and the other 
(clock B) performing a rotational motion in such a manner that its 'arm' always 
remains perpendicular to the linear velocity of rotation. 

If  clocksA and B have the same 'arms' they will go exactly at the same 
rate when being at rest, i.e., two photon packages left together, say, from their 
left mirrors, will reach the mirrors at the same time. 

However, if clock B performs the above-mentioned rotational motion, its 
photon package will always arrive, with a specific time delay, later than the 
corresponding photon package in clockA. Indeed, the photon packages have 
to cover the distance 2. ro between two reflections in clock A and the distance 

2 .  r 0 
2 . r -  

in clock B, where ro is the length of the light clock's 'arm'. 

(6.1) 
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This formula can be obtained from the first formula of (4.21)--or from 
formulae (4.8) and (4.10)--at the condition 0o = ~r/2, as well as from the second 
formula of (4 .21)-or  from formulae (4.9) and (4.11)-at  the condition 
cos 0 = v/c (see Fig. 4). 

Thus if we choose the unit of time as the time between two successive 
reflections of a photon package in a light clock with a given 'arm' ro, then the 
light clock A will have 

2 . ro  
no = (6.2) 

c 

absolute seconds in a unit of time. 
The light clock B will also have no absolute seconds in a unit of  time when 

being at rest and 

2 . r  2 . t o  

n= e - e . J ( 1  _ Ve~) (6.3) 

absolute seconds in a unit of  time when being in motion. 
From (6.2) and (6.3) we draw the conclusion that clock B goes at a slower 

rate and if, for a certain absolute time interval, say for one revolution of clock 
B, the reading of clock A is t A-time-units, then the reading of  clock B will be 

jr1 to = t .  - (6.4) 

B-time-units, since it is to/t = no/n. We call t time interval and to proper time 
interval. 

This deduction of the time dilation has an entirely non-relativistic character. 
It is clear from Fig. 4 that clock B moves with respect to absolute space and 
clock A is at rest. In the opposite case we have to assume that the whole world 
rotates about clock B; obviously, this is nonsense. 

In Fig. 4 the motion of clock B is non-inertial during the whole period of 
separation from clock A. We shall now show that we will also obtain the same 
effect of time dilation when the motion of clock B is inertial during the pre- 
dominant part of the separation time. 

Indeed, let us have (Fig. 5) a light clock A, which is at rest in absolute space, 
and an identical light clock B which passes near it (at point b) with velocity v. 
Until the point b' the light clock B moves inertially with the same velocity v. 
From point b'  to point b" its velocity reduces to zero, and from point b" to 
point b' its velocity increases again to v however oppositely directed. Clock B 
then begins to move inertially and, with this velocity v, again passes near 
clock A. 

Now assuming that the time of non-inertial motion is insignificantly short 
with respect to the time of its inertial motion, we can obtain, in a purely non- 
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Figure 5.-Two light clocks, the second of which performs a 'there and back' motion. 

relativistic way, the relation (6.4) between the time reading to of clock B and 
the time reading t of clock A for the whole time of separation. 

Here again clock B is in motion; in the opposite case we have to assume 
that when the mutual velocity of clocks A and B change, then clock B would 
not change its velocity with respect to the whole world but the whole world 
would have to change its velocity with respect to clock B; again this is nonsense. 

Until now we have supposed that the 'arm' of the moving light clock B is 
always perpendicular to its velocity. Now we shall show that the same result 
could be obtained if we assume that the 'arm' of clock B is parallel to its 
velocity. 

Indeed, in such a case the photon packages have to cover the distance 2. ro 
between two successive reflections on the same mirror in clock A and the 
distance 

/3 /3 
1 + - -  1 - - -  

c c 2. ro 
2 . r = r o  . - +ro  (6.5) 

in clock B. This result can be obtained from formulae (4.21) under the condi- 
tions 0o = 0 = 0 and 0o = 0 = rr. 

The non-relativistic relations (4.8), (4.9), (4.10), and (4.11) lead to two 
formula with different terms of second order in v/c, whose geometrical mean 
gives the result (6.5). 

Thus we have shown that any light clock moving arbitrarily with respect to 
absolute space goes at a slower rate than an identical light clock which rests 
in absolute space; the relation between their readings for a definite absolute 
interval of time is given by formula (6.4). 

We can generalise this conclusion and assume that the time of any clock 
(i.e., of any material system) which moves with respect to absolute space 
advances with a slower rate than absolute time. We suppose that this close 
connection between the light clock and any other clock (i.e., any other 
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periodic process) is due to the empirical fact that the velocity of light is a 
universal constant which gives the numerical tie between space and time. 

We record here that the results obtained in this section immediately give 
the explanation of the historical Michelson-Morley experiment. 

Indeed, if the lengths of the mutually perpendicular 'arms' in the Michelson 
interferometer are ro and Ro, then the absolute time intervals spent by two 
photon packages to cover these 'arms' there and back will be 

2. ro 2 .Ro  

The corresponding proper time intervals, i.e., those which will be read on a 
clock attached to the interferometer, will be (see (6.4)) 

2 . ro  2 .Ro  
Ato = , ATo = (6.7) 

C C 

For their difference, which calls forth an eventual shift in the interference 
fringes when rotating the interferometer with respect to the absolute velocity 
v of the interferometer or when changing the velocity v, we obtain 

2 
Ato - ATo = --. (ro - Ro) = const. (6.8) 

C 

Hence, not only the Michelson-Morley experiment (where ro = Ro), but also 
the Kennedy-Thorndike experiment (where ro ~ Ro) must give zero results, as 
was practically observed. 

7. Some Results 

With the help of formulae (5.13) we can immediately obtain expressions for 
the so-called Li~nard-Wiechert potentials. 

Indeed, according to our absolute conception, the electromagnetic 4-poten- 
tial of a point charge q at a reference point distant r (see formula (5. t 4)) from 
it is 

+-> 
+-> q Vo 

C " g o 

t -  5 

(7.1) 

(7.2) 

is the proper 4-velocity of the charge, ~ is its velocity at a given moment of 
observation and ro (see formula (5.17)) is the proper moment of observation 
and ro (see formula (5.17)) is the proper distance between charge and reference 
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point at this very moment ;  i is the imaginary unit; with the sign ~ we denote a 
4-vector, with the sign ~ its space part and with the sign - its time part. 

Substituting formulae (5.13) into (7.1), we obtain the electromagnetic 4- 
potential of  the charge q in the form of Li~nard-Wiechert 

+-~ 

= q .  v ~ =  q v (7.3) 
C t ~/r ~ C . n . V  

r .  1 -  r .  1+  

where v = (v, i .  c) is the 4-velocity of  the charge, r '  is the advanced distance 
and r" is the retarded distance. 

In our absolute space-time theory we do not introduce drastic differences 
between electricity and gravitation. All formulae with which we work are 
identical if the electric charges are replaced by masses and the inverse electric 
constant (which in the system CGS is equal to unity) by the gravitational con- 
stant taken with a negative sign. 

Hence on the basis of  (7.1) we obtain that the gravitational potential of  a 
point mass m, moving with velocity ~ v~.th respect to the reference point 
distant r f rom it, is to be presented in the form 

k 2 . m 

ro.  1 - 

where k 2 is the gravitational constant and ro the proper distance. 
The gravitational energy of  mass m and a mass M which rests at the reference 

point wilt be U = M .  ¢. Using this form for the gravitational energy we obtain 
(in Part IV of our manuscript (Marinov, in preparation) dedicated to gravita- 
tion): 

(a) For the perihelion displacement of  the planets a result which represents 
half  of  the result given by general relativity. 

(b) For the angular deflection of  a light beam passing near the sun a result 
which represents half of  the result given by general relativity. 

(c) For the gravitational frequency shift (the so-called 'red shift ') a result 
which is the same as that given by general relativity. 

In our opinion the experimental check of the first two results is not suffici- 
ently reliable, so it is impossible to decide whose predictions best correspond 
to reality. As a decisive experimentum crucis in favour of  our theory we now 
consider only the 'coupled-mirrors'  experiment (Marinov, 1975). 
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